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Abstract
It has been observed that in the Sherrington–Kirkpatrick spin glass model
the relative entropy of the probability distribution of the product of two
independent replicas with respect to the uniform distribution exhibits a sort
of phase transition above the critical point of the model. In this paper, we show
that this is not an isolated phenomenon as, for example, the product of three
replicas shows analogous behaviour. We also study the probability distribution
of the product of a spin glass and a ferromagnetic system.

PACS numbers: 05.70.Fh, 02.50.Cw, 75.10.Nr

1. Introduction

The Sherrington–Kirkpatrick (SK) [3] model of the mean field theory of spin glasses exhibits
interesting behaviour even in the high-temperature regime. Catoni [1] and Comets [2] observed
that at inverse temperature β = 1/

√
2 (which is above the critical point βc = 1) the model

goes through a sort of secondary phase transition. They calculated the relative entropy of the
distribution of the product of two independent replicas with respect to the uniform probability
measure. They found that this relative entropy is very small if β < 1/

√
2, while its per site

value is positive in the thermodynamic limit if β > 1/
√

2. Since one expects some sort of
uniformity of behaviour in the high-temperature regime, it is reasonable to look for similar
phenomenon also at other values of β. In this paper, we show that around β ≈ 0.799 the
product of three independent replicas shows similar behaviour.

The relative entropy measures how evenly a probability measure (PM) is distributed
among the spin configurations. The PM on the product of two replicas corresponds to the
convolution of the PMs of the individual replicas. The convolution of PMs usually gives a
more evenly distributed PM. So these sorts of results measure how far we need to spread
out or smooth the spin glass PM in order to reach the uniform distribution. However, this
information is quite implicit, since the spin glass PM is not a very simple object. So it is
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reasonable to try to compute the convolution of the spin glass PM with something simpler,
such as the PM of a ferromagnetic Curie–Weiss (CW) model. The PM of the CW model
is basically the uniform distribution in the high-temperature phase, so in that case the result
of the convolution should also be the uniform distribution. This observation gives a simple
proof of the fact that the free energy of the SK model is not changed by a sufficiently small
ferromagnetic perturbation of the random couplings. This phenomenon was already observed
by Sherrington and Kirkpatrick in [3].

We describe the computation of the relative entropy of the product of three replicas in
section 2, while section 3 contains the study of the convolution of the PMs of a spin glass and
a ferromagnetic system.

2. The product of three spin glass replicas

Let us recall that the SK model is defined by the Hamiltonian

HJ (s) = −
N∑

0<i<j�N
Jij sisj (1)

where Jij are independent Gaussian random variables with zero mean and variance 1/N , and
si = ±1. HJ (s) defines the probability distribution on the s spin configurations:

ρJ,β(s) = ZJ (β)
−1 exp{−βHJ (s)} where ZJ (β) =

∑
s

exp{−βHJ (s)}. (2)

The s spin configurations might be taken as members of the Abelian group Z
N
2 with sitewise

product,

(s · s′)i = sis
′
i . (3)

The convolution of two discrete probability measures is defined by

(p1 ∗ p2)(s) =
∑
s

p1(s
′)p2(s

′−1s). (4)

The relative entropy of two distributions is

h(p1, p2) =
∑
s

p1(s) log
p1(s)

p2(s)
. (5)

Catoni and Comets showed that

1

N
EJ h(u, ρJ,β ∗ ρJ,β) (6)

tends to zero as N → ∞ if β < 1/
√

2 while, if β > 1/
√

2, it approaches a positive value.
(Here u denotes the uniform probability measure and EJ denotes the expectation value with
respect to the distribution of the Jij couplings.) With the help of the replica method, we
determine the point where

1

N
EJ h(u, ρJ,β ∗ ρJ,β ∗ ρJ,β) = 1

N
EJ h

(
u, ρ3

J,β

)
(7)

shows similar behaviour.
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So let us compute h
(
u, ρ3

J,β

)
:

h
(
u, ρ3

J,β

) =
∑
ψ

1

2N
log


 1

2N

(∑
s1,s2 exp{−β(HJ (s1) +HJ (s2) +HJ (s1 · s2 · ψ))}∑

s1,s2,s3 exp{−β(HJ (s1) +HJ (s2) +HJ (s3))}

)−1



= −N log 2 + log[ZJ (β)]
3 − 1

2N
∑
ψ

log
∑
s1,s2

exp{−β[HJ(s
1)

+HJ(s2) +HJ (s1 · s2 · ψ)]}. (8)

We need to compute the expectation value of h
(
u, ρ3

J,β

)
with respect to the distribution

of the Jij couplings. It is known [3] that EJ logZJ (β) = N(β2/4 + log 2), while the last
term can be computed by the standard techniques of the replica method. Note that

EJ
1

2N
∑
ψ

log
∑
s1,s2

exp{−β(HJ (s1) +HJ (s2) +HJ (s1 · s2 · ψ))}

= EJ log
∑
s1,s2

exp{−βHJ,1(s1, s2)} (9)

whereHJ,1(s1, s2) = HJ (s
1) +HJ (s2) +HJ (s1 · s2), since the distribution of the couplings is

invariant under the Jij → J
ψ

ij = Jijψiψj gauge transformation. For the computation of the
expected value of the logarithm, we employ the replica trick and compute

EJZJ (β)
n = EJ


∑
s1,s2

exp{−βHJ,1(s1, s2)}


n

=
∫

dµ(Jij )
∑
s1,a,s2,a

exp


−β

n∑
a

∑
i<j

Jij

(
s

1,a
i s

1,a
j + s2,a

i s
2,a
j + s1,a

i s
2,a
i s

1,a
j s

2,a
j

)


=
∑
s1,a ,s2,a

exp


 β2

2N

∑
i<j

(∑
a

s
1,a
i s

1,a
j + s2,a

i s
2,a
j + s1,a

i s
2,a
i s

1,a
j s

2,a
j

)2

 . (10)

The expectation value of logZJ can be recovered from the derivative of ZnJ at n = 0. After
some straightforward [4] manipulations, we obtain that

EJZ
n
J =

∫ ∏
A;B

dQA;B

(
Nβ2

2π

)1/2

exp{−NA[Q]} (11)

A[Q] = −3nβ2

4
+
β2

2

∑
A;B

Q2
AB − logZ[Q] (12)

Z[Q] =
∑
S1,S2

exp{−βH [Q,S1, S2]} (13)

H [Q,S1, S2] = −β
(∑
a<b

Q1·1
ab S

1
aS

1
b +Q2·2

ab S
2
aS

2
b +Q12·12

ab S1
aS

2
aS

1
bS

2
b

+
∑
a,b

Q1·12
ab S

1
aS

1
bS

2
b +Q2·12

ab S
2
aS

1
bS

2
b +Q1·2

ab S
1
aS

2
b

)
. (14)
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At this point, we make the replica symmetric approximation for Q:

Q1·1
ab = Q2·2

ab = q Q1·2
ab = r Q12·12

ab = s Q1·12
ab = Q2·12

ab = t . (15)

Although the replica symmetric ansatz for Q does not predict correctly the exact value of
EJZ

n
J , it does provide the correct location of the critical point. With these choices, we obtain

that
1

N
EJ h

(
u, ρ3

J,β

) = − log 2 + 3(β2/4 + log 2) + crit(f ) (16)

where

f = −3

4
β2 +

β2

2
(−q2 − s2) + β2(q + s/2)−

∫ 9∏
i=1

dxi√
2π

exp

{
−1

2

9∑
i=1

x2
i

}

× log(eA+B+C + e−A−B+C + eA−B−C + e−A+B−C) (17)

A = √
qx1 +

√
t/2(x4 + ix5) +

√
r/2(x8 + ix9) (18)

B = √
qx2 +

√
t/2(x6 + ix7) +

√
r/2(x8 − ix9) (19)

C = √
sx3 +

√
t/2(x4 − ix5) +

√
t/2(x6 + ix7) (20)

and crit(f ) denotes the critical value of f (q, r, s, t). In the standard SK model, one has to
maximize the free energy with respect to the overlap parameter q. Since q occursn(n−1) times
in the overlap matrix Qa,b, which is negative at small positive values of n, the maximization
of the free energy with respect to negative numbers of parameters is regarded as the correct
analogue of the usual minimization of the free energy. Similar considerations should be
applied in our case to the q and s parameters, but we should minimize f with respect to the
r, t parameters since they occur n2 > 0 times in the Q1·2

ab ,Q
1·12
ab or Q2·12

ab matrices. The f can
be computed after some (computer) algebra up to second order:

f (q, r, s, t) ≈ −log 4 + β2

(
−3

4
+
qsβ2

4
− q2

2
+

3q2β2

4
− s2

2
+
r2β2

4
+

5s2β2

16
+
t2β2

2

)
.

(21)

The q = r = s = t = 0 critical point loses its stability when the quadratic part of f in q and
s becomes semidefinite. This happens when

11

64
β4 − 17

32
β2 +

1

4
= 0 ⇒ β3 =

√
17 − √

113√
11

≈ 0.761. (22)

After this value 1
N

EJ h
(
u, ρ3

J,β

)
attains a positive value. Note that this ‘critical point’

corresponds to a somewhat lower temperature than β2 = 1/
√

2, where 1
N

EJ h
(
u, ρ2

J,β

)
becomes positive. This result is quite reasonable, since the convolution of probability measures
usually smooths them, so ρ3

J,β should be closer to the uniform distribution than ρ2
J,β . It is

clear that similar phenomenon occurs for the higher powers of ρJ,β above the critical inverse
temperature β = 1.

3. The product of a spin glass and a ferromagnetic system

Let us consider besides the SK model the ferromagnetic Curie–Weiss mean field model defined
by the Hamiltonian

HCW = −J0

N

∑
0<i<j�N

σiσj . (23)
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For J0β < 1 the model is in the disordered phase and the PM of the σ spins is very close to
the uniform distribution. Now let us compute the relative entropy of the PM of the product
ψi = σ isi with respect to the u uniform distribution. Here s is the same as in section 2.

The joint Hamiltonian of s and σ is

H(s, σ ) = −
∑

0<i<j�N
Jij sisj +

J0

N
σiσj

= −
∑

0<i<j�N

(
Jijψiψj +

J0

N

)
σiσj = Hψ(σ). (24)

The probability distribution of ψ is given by

pJ (ψ) =
∑

σ exp
{
β
∑

0<i<j�N
(
Jijψiψj + J0

N

)
σiσj

}
∑

σ,s exp
{
β
∑

0<i<j�N Jij sisj + J0
N
σiσj

} . (25)

The relative entropy of pJ is

h(u, pJ ) =
∑
ψ

1

2N
log

1
2N

pJ (ψ)
. (26)

So

1

N
EJ h(u, pJ ) = 1

N
EJ


∑

ψ

1

2N

[
log

1

2N
+ log

∑
σ,s

e−βH(s,σ ) − log
∑
σ

e−βHψ(σ )
]

= 1

N
EJ


−N log 2 + log

∑
s

e−βHSK(s) + log
∑
σ

e−βHCW(σ )

− log
∑
σ

exp


−β

∑
i<j

(
Jij +

J0

N

)
σiσj




 . (27)

Here we considered that the distribution of the Jij couplings is invariant under the Jij →
Jijψiψj transformation.

If J0β < 1 then this expression should be zero, since the pJ distribution is a convolution
where one factor is already the almost uniform distribution of the σ spins. As −N log 2
cancels log

∑
σ exp{−βHCW(σ )} in the high-temperature phase, the following equation must

hold:

EJ log
∑
s

exp


β

∑
i<j

Jij sisj


 = EJ log

∑
s

exp


β

∑
i<j

(
Jij +

J0

N

)
sisj


 . (28)

From this, we conclude that if J0 < 1/β than the ferromagnetic perturbation Jij → Jij +J0/N

does not change the free energy of the spin glass system. This phenomenon was already
observed by Sherrington and Kirkpatrick [3]. Let us note that the observation of Catoni [1]
on the relative entropy of the PM of the product of two spin glass replicas was a by-product of
his derivation of improved bounds of the free energy of the SK model.
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